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Abstract

Multinomial-response models are available that correspond implicitly to tests in which a

total score is computed as the sum of polytomous item scores. For these models, joint and

conditional estimation may be considered in much the same way as for the Rasch model for

right-scored tests. As in the Rasch model, joint estimation is only attractive if both the

number of items and the number of examinees are large, while conditional estimation can

be employed for a large number of examinees whether or not the number of items is large.

In neither case is computation difficult given currently available computers. Large-sample

results favor use of conditional estimation, although some use of joint estimation can be

contemplated if the number of items is large.
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Introduction

Probability models based on exponential families are readily constructed for tests in

which the total score is the sum of polytomous item scores. In these models, which are

described in Section 1., the total scores for the examinees are part of the sufficient statistics

for the model. These models can be employed to assess what information, if any, can

be obtained concerning examinees that is not revealed by the total score. In addition,

these models typically have parameters that correspond to such common concepts in item

response theory as examinee ability and item difficulty. The models themselves have existed

for some time (Bock, 1972; Andrich, 1978; Masters, 1982; Andersen, 1983); however, the

appropriateness of joint and conditional estimation has not been extensively studied for

these models in the common case in which both the number of examinees and the number

of items are large. In this report, two aspects of joint and conditional estimation are

considered for this case. Consistency and asymptotic normality of parameter estimates

are explored for these methods, and computation of estimates is considered. Marginal

estimation for this class of models is not considered in this report, and this topic does merit

study. This report confines attention to techniques that do not require assumptions about

the underlying ability distribution.

Joint and conditional estimation proceed in much the same way as for the Rasch

model for binary responses (Rasch, 1960; Haberman, 1977, 2004). As in the Rasch

model for binary responses, straightforward application of maximum likelihood presents a

number of complications if no restrictions are imposed on the ability distribution, so that

joint maximum likelihood and conditional maximum likelihood will receive considerable

attention.

Section 2. examines joint maximum-likelihood estimation (JMLE). Results rely heavily

on previously derived results for the binary Rasch model (Andersen, 1972; Fischer, 1981;

Haberman, 1977, 2004). As expected, JMLE does not lead to fully satisfactory approximate

confidence intervals for item parameters, and the normal approximation for the distribution

of ability estimates is not fully satisfactory. Nonetheless, joint estimation does have possible

use in construction of starting values for conditional estimation.

Section 3. examines conditional maximum-likelihood estimation (CMLE) for the
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models under study. Techniques are based on those for the binary Rasch model

(Andersen, 1972, 1973a, 1973b; Fischer, 1981; Haberman, 2004). Basic properties of

conditional maximum-likelihood estimates are readily examined. Computation with the

Newton-Raphson algorithm is only moderately more complicated than for the binary Rasch

model provided that convolutions are used and starting values exploit joint estimation.

Normal approximations for estimates of item parameters are established that apply whether

or not the number of items increases.

To illustrate results, data from Form A of the TOEFL R© field trial are used. To compare

estimates, the reading and listening sections are examined as a single test. Although the

preponderance of items have simple right scores, one reading item has integer scores from 0

to 4, one has integer scores 0 to 2, and one has integer scores 0 to 3. Two listening items

have integer scores 0 to 2. In all, 71 items are scored on 2,720 examinees. Use of the

single test provides a better opportunity for joint estimation than is afforded by a separate

reading and a separate listening tests. In addition, it is easily verified that the listening and

reading test results are very highly correlated, so that it is not obvious that much error is

introduced by combining the scales. The actual loss of information from this step is to be

considered in a separate paper.

Section 4. summarizes the implications of the research for psychometric practice and

discusses some further areas of possible development.

1. Models for Polytomous Scoring

In the basic model for polytomous scoring, the number of possible scores per item may

vary, but it is required that all scores be rational numbers. This requirement is necessary for

conditional estimation. The model examined is the nominal model (Bock, 1972; Andersen,

1983). The rating scale model (Andrich, 1978) and partial credit model (Masters, 1982) are

considered in relationship to the basic model.

In the model under study, the score of examinee i, 1 ≤ i ≤ n, is a sum of scores assigned

to each of q items. For each item j and examinee i, let the response be denoted by the

integer Yij. For some integer rj ≥ 2, let 0 ≤ Yij ≤ rj − 1, and for each Yij, let the possible

scores on item j be uj(k), 0 ≤ k ≤ rj − 1. Let the score of examinee i on item j be
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uij = uj(Yij), so that the total examinee score is

Si =

q∑
j=1

uij.

In the TOEFL case with reading and listening scores combined, q = 71 and rj = 2 except

for Items 11, 25, 38, 42, and 58. For Item 11, r11 = 5; for Item 38, r38 = 4; and for Items

j equal to 25, 42, and 58, rj = 3. In the TOEFL example, uj(k) is always k. In the math

and verbal sections of the SAT R© I examination, which was recently replaced with the SAT

Reasoning TestTM, a somewhat more complex system of scoring is used. If item j is a

multiple-choice item with dj > 1 alternatives, then a score of 1 is used for a correct answer,

a score of −1/(dj − 1) is used for an incorrect answer, and a score of 0 is used for an omitted

response. In grid-in responses, a score of 1 is used for a correct response. No response or an

incorrect response receives a score of 0. It is easily seen that the SAT scoring method is a

special case of the scoring method considered in this paper. Unlike the TOEFL example,

the scores for items are not necessarily integers and are not necessarily nonnegative.

It is assumed that the vectors Yi with coordinates Yij, 1 ≤ j ≤ q, are mutually

independent and identically distributed. It is also assumed that, for each item j, the

possible scores uj(k) are not all equal, so that the item response can change the total score.

If ûj is the arithmetic mean

ūj =
1

rj

rj∑
k=1

uj(k),

then

Uj =

rj∑
k=1

[uj(k)− ūj]
2 > 0.

Because conditional estimation is often considered, the added assumption is made that each

score uj(k) is equal to ujn(k)/ujd(k) for an integer ujn(k) and a positive integer ujd(k), so

that uj(k) is a rational number. This requirement is needed to permit useful inferences

conditional on the examinee scores Si.

In the nominal model, to each examinee i corresponds an unknown ability parameter θi,

and the θi are independent random variables with common unknown distribution function

D. Given θi, the Yij, 1 ≤ j ≤ q, and the θh, h 6= i, are mutually independent. To each

item j correspond unknown item parameters βjk, 0 ≤ k ≤ rj − 1. To construct vectors to
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use with these parameters, let R0 = 0 and Rj = Rj−1 + rj for 1 ≤ j ≤ q. Let β be the

vector of dimension Rq with coordinate ζ(j, k) = Rj−1 + k + 1 equal to βjk, 1 ≤ j ≤ q and

0 ≤ k ≤ rj − 1. Under the nominal model, the conditional probability that Yij = k given θi

is

pijk = pjk(β, θi), (1)

where

ej(β, θi) =

{
rj−1∑
k=0

exp[θiuj(k)− βjk]

}−1

(2)

and

pjk(β, θi) = ej(β, θi) exp[θiuj(k)− βjk] (3)

(Bock, 1972; Andersen, 1983). To permit identification of parameters, the convention is

adopted that β is in the set Λ of Rq-dimensional vectors x with coordinate ζ(j, k) equal to

xjk such that
∑rj−1

k=0 xjk = 0 for each item j and
∑r1−1

k=0 [u1(k)− ū1]x1k = 0.

Conditional on the θi, sufficient statistics for the observed Yij, 1 ≤ i ≤ n, 1 ≤ j ≤ q,

are the examinee scores Si and the number of examinees fjk with Yij = k, 0 ≤ k ≤ rj − 1,

1 ≤ j ≤ q, and 1 ≤ i ≤ n. The nominal model is the model implicitly defined by the

requirement of sufficiency of the Si and the fjk given the θi (Gilula & Haberman, 2000).

Special cases of the nominal model for polytomous item scores can be found in the

literature. The Rasch model for binary data arises if rj = 2 and uj(k) = k for each j

(Rasch, 1960). In this case, the identifiability restrictions are equivalent to the requirements

that βj1 = −βj0 for j ≥ 2 and β10 = β11 = 0. In the partial credit model, uj(k) = k and rj

is a constant r, so that
∑r−1

k=0 βjk = 0 and
∑r−1

k=0[k − (r − 1)/2]β1k = 0 (Masters, 1982). In a

version of the rating scale model, rj is a constant r, uj(k) is independent of j, and

βjk = µk − νj[u1(k)− ū1]

for unknown µk and νj such that
∑r−1

k=0 µk = 0 and
∑r−1

k=0[u1(k)− ū1]µk = ν1U1. The νj are

item difficulties. The conditions on βjk are satisfied if µr = 0, u1(r) = 0, and

ν1 = U−1
j

r∑
k=1

[u1(k)− ū1]µk

(Andrich, 1978).
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For all versions of the nominal model, the probability that Yi has a specific value c is

readily calculated. Consequently, a log likelihood function can be obtained. To calculate

the desired probability, let Γ be the set of q-dimensional vectors c with integer coordinates

cj, 1 ≤ j ≤ q, such that 1 ≤ cj ≤ rj. Then for c in Γ, the probability pJ(c) that Yi = c is

pJ(c) = E

(
n∏

j=1

p1jcj

)
.

For a more explicit expression, let

S(c) =

q∑
j=1

uj(cj)

be the score Si = S(c) obtained if Yi = c. Let S be the set of possible values of Si, so that

s is in S if, and only if, s = S(c) for some c in Γ. Let A be the number of elements of S,

and let s(a) be the ath smallest element of S for a from 1 to A. For s in S, let Γ(s) be

the set of c in Γ such that S(c) = s. For Rq-dimensional vectors x and y with respective

coordinates ζ(j, k) equal to xjk and yjk, 1 ≤ j ≤ q and 0 ≤ k ≤ rj − 1, let

x′y =

q∑
j=1

rj−1∑
k=0

xjkyjk.

For any c in Γ, let Zjk(c) be 1 for cj = k and 0 otherwise, and let Z(c) denote the

Rq-dimensional vector with coordinate ζ(j, k) equal to Zjk(c), 1 ≤ j ≤ q and 0 ≤ k ≤ rj −1.

Then
q∑

j=1

βjcj
=

q∑
j=1

rj−1∑
k=0

Zjk(c)βjk = β′c.

Let

Ms(β) =
∑

c∈Γ(s)

exp[−β′Z(c)] (4)

for s in S, let

Φ(β, θ) =
∑
s∈S

exp(θs)Ms(β),

and let

τs = log

∫
[Φ(β, θ)]−1 exp(θs)dD(θ). (5)

5



Let τ be the A-dimensional vector with coordinate a equal to τs(a) for a from 1 to A. For

any c in Γ(s) and any s in S,

pJ(c) = exp[−β′Z(c) + τs]. (6)

Let pJ be the array of pJ(c) for c in Γ. Let Ξ consist of all pJ such that (6) holds for c in

Γ(s) and s in S, where τs satisfies (5) for s in S for some β in Λ and some distribution

function D. To obtain the log likelihood function `(pJ), let Zijk be 1 if Yij = k and let

Zijk = 0 if Yij 6= k, and let

Z+jk =
n∑

i=1

Zijk

be the number of examinees i who provide response k to item j. Let Z+ be the

Rq-dimensional vector with coordinate ζ(j, k) equal to Z+jk, 1 ≤ j ≤ q and 0 ≤ k ≤ rj − 1.

Let NS(s) be the number of examinees i with total score Si = s, and let NS be the array of

NS(s) for s in S. Let NS be the vector of NS(s(a)), a from 1 to A, and let

N′
Sτ =

∑
s∈S

NS(s)τs.

Let pJ be the array of pJ(c) for c in Γ. Then

`(pJ) =
n∑

i=1

log pJ(Yi)

= −β′Z+ + N′
Sτ.

Thus Z+ and NS are jointly sufficient for β and D.

Use of maximum likelihood with the nominal model is far from straightforward due to

the integrals involved in the definition of τs and due to the lack of identifiability of the

distribution function D. The problem is similar to difficulties encountered with the Rasch

model (Cressie & Holland, 1983; Haberman, 2004). The probability pS(s) that Si = s is

pS(s) = Ms(β) exp(τs),

so that ∑
s∈S

Ms(β) exp(τs) =
∑
s∈S

pS(s) = 1.
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Because each uj(k) is rational, a largest positive rational number B exists such that

any member s of S is s(1) + hB for a nonnegative integer h ≤ [s(A) − s(1)]/B. In the

TOEFL example under study, B is 1. If s = s(1) + hB for an integer h and s is in S, then

exp(τs − τs(1)) is the hth moment of a positive random variable X such that the probability

that logX ≤ y, y real, is ∫ y

−∞[Φ(β, θ)]−1 exp[s(1)θ]dD(θ)∫∞
−∞[Φ(β, θ)]−1 exp[s(1)θ]dD(θ)

.

Because only a finite number of moments are specified by the ratios exp(τs − τs(1)), it

follows that more than one distribution function D corresponds to the same β and τs, s in

S. On the other hand, if a positive random variable X exists such that exp(τs − τs(1)) is the

hth moment of X whenever s = s(1) + hB is in S and if G is the distribution function of

logX, then (5) holds if

D(x) =

∫ x

−∞ Φ(β, θ) exp(−s(1)θ)dG(θ)∫∞
−∞ Φ(β, θ) exp(−s(1)θ)dG(θ)

.

The nominal model implies the log-linear model in which, for some β in Λ, and real τs,

s in S,

log pJ(c) = −β′Z(c) + τs (7)

for c in Γ(s) and s in S and ∑
s∈S

Ms(β) exp(τs) = 1. (8)

Let Ξ+ consist of all pJ such that (7) holds for some β in Λ and some τs, s in S, such that

(8) holds. Then pJ satisfies the log-linear extension of the nominal model if, and only if, pJ

is in Ξ+. On the other hand, the log-linear model does not imply the nominal model, for

the nominal model can only hold if τs satisfies the convexity condition that

τs ≤ aτt + (1− a)τu

whenever s = at + (1 − a)u, s, t, and u are in S, and 0 < a < 1 (Feller, 1966, p. 153).

Thus Ξ is a proper subset of Ξ+. For the log-linear extension of the nominal model, the

log-likelihood `(pJ) has the same form as in the nominal model, and the sufficient statistics

remain Z+ and NS.
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2. Joint Maximum-Likelihood Estimation

In JMLE, the ability parameters θi are regarded as fixed parameters to be estimated.

The estimates of the θi are then used to estimate the distribution function D. Use of joint

maximum likelihood has a long history of controversy in many areas of statistics (Kiefer

& Wolfowitz, 1956). In many circumstances, joint maximum likelihood is relatively easily

implemented; however, consistency of estimates is a major concern, especially if the number

of items is fixed and the number of subjects increases. Consistency issues can be resolved if

both the number of items and the number of subjects increases, a result that is known in

the special case of the binary Rasch model (Haberman, 1977, 2004). In this section, it is

shown that joint estimation is rather unsatisfactory in terms of consistency if the number

of items is not large, but joint estimation can lead to consistent and asymptotically normal

parameter estimates if both the number of items and the number of examinees is large.

To simplify large-sample results, a number of boundedness assumptions and convergence

assumptions are made. To begin, it is assumed that the θi are bounded, so that D(x) is 0

for x sufficiently small, and D(x) = 1 for x sufficiently large. It is also assumed that the

βjk, ujn(k), ujd(k), and rj are uniformly bounded if q goes to ∞, so that B has the same

value for all q sufficiently large. Let rmax be the largest value of rj for any j ≥ 1. It is

assumed that, for each integer r ≤ rmax, the fraction of items j with rj = r approaches a

constant fj as q increases and the empirical distribution of βj, rj = r, converges weakly to

the distribution of the r-dimensional random vector β∗r. The assumptions made imply that

constants s∗− and s∗+ exist such that s(1)/q converges to s∗− and s(A)/q converges to s∗+.

To define joint estimation, let p denote the array of pijk, 1 ≤ i ≤ n, 1 ≤ j ≤ q,

1 ≤ k ≤ rj. The joint log likelihood function

`J(p) =
n∑

i=1

q∑
k=1

Zijk log pijk

is maximized under the model constraints. In the expression for `J(p), note that Zijk log pijk

is log pijh if Yij = h. The resulting maximum `JM under the constraints from (1) is achieved

if, and only if, βjk = β̂jk and θi = θ̂i for β̂jk and θ̂i such that β̂ is the Rq-dimensional vector

with coordinate ζ(j, k) equal to β̂jk,

p̂ijk = pjk(β̂, θ̂i), (9)
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β̂ is in Λ,
q∑

j=1

rj−1∑
k=0

uj(k)p̂ijk = Si (10)

and

Z+jk = p̂+jk =
n∑

i=1

p̂ijk (11)

(Haberman, 1977). If the β̂jk and θ̂i exist, then they are uniquely defined. The β̂jk

are the JMLEs of the βjk, and the θ̂i are the JMLEs of the θi. The vector β̂ is the

maximum-likelihood estimate of β.

2.1 Computations and Collapsed Tables

Computation of JMLEs is greatly simplified by use of a collapsed table. Let S+ be

the set of s in S such that NS(s) > 0. Consider the array with entries fsjk for s in S+,

0 ≤ k ≤ rj − 1, and 1 ≤ j ≤ q, such that fsjk is the number of examinees i, 1 ≤ i ≤ n, such

that Si = s and Yij = k. For real x and y, let δx(y) be 1 for x = y and 0 otherwise. Observe

that

q∑
j=1

rj−1∑
k=0

uj(k)fsjk =

q∑
j=1

rj−1∑
k=0

uj(k)
n∑

i=1

δs(Si)uj(k)Zijk

=
n∑

i=1

δs(Si)

q∑
j=1

rj−1∑
k=0

uj(k)Zijk

= sNS(s)

for s in S+, and the sum

f+jk =
∑
s∈S+

fsjk

=
∑
s∈S+

n∑
i=1

δs(Si)Zijk

=
n∑

i=1

Zijk

∑
s∈S+

δs(Si)

= Z+jk.
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Consider maximization of the collapsed log likelihood

`JC(pC) =
∑
s∈S+

q∑
j=1

rj−1∑
k=0

fsjk log psjkC ,

for pC the array of psjkC , s in S+, 0 ≤ k ≤ rj − 1, 1 ≤ j ≤ q, with the constraints that

psjkC = pjk(β, θsC)

and β is in Λ. Let `JCM be the supremum of `JC . Then `JCM = `JC if, and only if, β = β̂C

and θsC = θ̂sC , where β̂C is in Λ,

p̂sjkC = pjk(β̂C , θ̂sC) (12)

for s in S+, 0 ≤ k ≤ rj − 1, and 1 ≤ j ≤ q,∑
s∈S+

NS(s)p̂sjkC = f+jk = Z+jk (13)

for 0 ≤ k ≤ rj − 1 and 1 ≤ j ≤ q, and

q∑
j=1

rj−1∑
k=0

uj(k)p̂sjkC = s (14)

for s in S+ (Haberman, 1977, 2004). The vector β̂C is uniquely defined if it exists. The θ̂sC

are uniquely defined for s in S+ if they exist.

Because p̂sjkC is positive and less than 1 for s in S+, 0 ≤ k ≤ rj − 1, and 1 ≤ j ≤ q, (14)

does not hold if s(1) or s(A) is in S+, so that some examinee i exists such that either

uj(Yij) = uj+ = max
0≤k≤rj−1

uj(k)

for all items j or

uj(Yij) = uj− = min
0≤k≤rj−1

uj(k)

for all items j. In the case of the TOEFL examination, A = 80, s(1) = 0, and s(A) = 79.

One examinee achieved a total score of 79, so nonexistence is an issue.

The relationship of θ̂sC and β̂C to the corresponding joint maximum-likelihood estimates

is straightforward. If θ̂sC and β̂C exist, then θ̂i = θ̂sC for Si = s and β̂jk = β̂jkC . If the
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β̂jk and θ̂i exist, then β̂jkC = β̂jk and θ̂sC = θ̂i for s = Si. Thus joint maximum-likelihood

estimates are readily found by maximization of `JC .

From a computational standpoint, the collapsed table has major impact, for one can

compute joint maximum-likelihood estimates by acting as if a multinomial response model

holds with independent arrays fsjk, 0 ≤ k ≤ rj − 1, with sample size NS(s) and with

probabilities psjk, 0 ≤ k ≤ rj − 1, for 1 ≤ j ≤ q and s in S+, where

psjk = pjk(β, θsC).

Instead of an n by q array of responses Yij, it suffices to consider the array of counts fsjk.

If r+ =
∑q

j=1 rj, then the array of fsjk has no more than Ar+ elements. For instance, in

the TOEFL example, the array has no more than 80 × 150 = 12, 000 entries, but there

are 2, 720 × 71 = 193, 120 responses Yij to consider. The array of fsjk also assists in the

study of existence of joint maximum-likelihood estimates and in the study of large-sample

properties of JMLE. Given existing software for multinomial response models, computation

of β̂ = β̂C and θ̂sC , s in S+, is straightforward.

2.2 Existence of Joint Maximum-Likelihood Estimates

Existence of joint maximum-likelihood estimates is a substantial problem in practice.

To study the issue, standard results from the theory of log-linear models are used as in the

following theorem (Haberman, 1974, chap. 2):

Theorem 1 Joint maximum-likelihood estimates exist if, and only if, a table of positive gsjk,

0 ≤ k ≤ rj − 1, 1 ≤ j ≤ q, s in S+, exists such that g+jk = f+jk for 0 ≤ k ≤ rj − 1 and

1 ≤ j ≤ q,
∑rj−1

k=0 gsjk = NS(s) for 1 ≤ j ≤ q and s in S+, and

q∑
j=1

rj∑
k=0

uj(k)gsjk = sNS(s)

for s in S.

It is clearly true that joint maximum-likelihood estimates exist if fsjk is positive for all

s in S+, 0 ≤ k ≤ rj − 1, and 1 ≤ j ≤ q, for one may just take gsjk = fsjk. It is clearly true
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that joint maximum-likelihood estimates do not exist if f+jk is 0 for some j and k or if s(1)

or s(A) is in S+.

These results suffice to indicate that joint maximum-likelihood estimates do not exist

for the TOEFL example, for NS(s(A)) = 1 > 0. Thus a more general approach to joint

estimation is required for the TOEFL data.

2.3 Extended Joint Maximum-Likelihood Estimates

Without any conditions, extended joint maximum-likelihood estimates p̂ijk of pijk may

be defined such that 0 ≤ p̂ijk ≤ 1, p̂ij+ = 1, p̂+jk = Z+jk,

n∑
i=1

q∑
j=1

rj−1∑
k=0

Zijk log p̂ijk = `JM ,

and real θiν , 1 ≤ i ≤ n, and βν in Λ exist for ν ≥ 0 such that

pjk(βν , θiν)

approaches p̂ij as ν approaches ∞ (Haberman, 1974, pp. 402–404). The definition of

extended joint maximum-likelihood estimates p̂ijk is consistent with the previous definition

of p̂ijk when joint maximum-likelihood estimates exist. The p̂ijk are uniquely defined. In

addition, if real θi0ν and β0ν in Λ exist for 1 ≤ i ≤ n and ν ≥ 0 such that

pjk(β0ν , θi0ν)

approaches p̂ijk0 as ν approaches ∞,

q∑
j=1

rj−1∑
k=0

uj(k)pijk0 = Si,

and p+jk0 = Z+jk, then pijk0 = p̂ijk. In terms of the collapsed table, p̂sjkC are defined so

that (13) and (14) hold, and p̂ijk = p̂sjkC for Si = s. In this case,

∑
s∈S+

q∑
j=1

rj−1∑
k=0

fsjk log p̂sjkC = `JCM .

The estimates p̂sjkC may be used to create estimates θ̂i, θ̂sC , and β̂ = β̂C . These

estimates may be infinite in some cases. For instance, θ̂i = θ̂sC = ∞ if Si = s(A), and
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θ̂i = θ̂sC = −∞ if Si = s(1). If the p̂s1kC are positive for all k from 1 to r1 and Si = s, then

θ̂i = θ̂sC = U−1
1

r1−1∑
k=0

[u1(k)− ū1] log p̂s1k.

If, in addition, the p̂sjk are positive for 0 ≤ k ≤ rj − 1 for some j ≥ 1, then coordinate

ζ(j, k) of β̂ is

β̂jk = − log(p̂sjkC + r−1
j

rj−1∑
k′=0

p̂sjk′C) + θ̂s[uj(k)− ūj].

2.4 Consistency

Even if (1) holds, if the number q of items is constant, the βjk are constant, and n

approaches ∞, then the θ̂i are not consistent estimates of the θi, and the β̂jk are not

consistent estimates of the βjk. This outcome is predictable given results for the Rasch

model for binary data (Andersen, 1973a, pp. 66–69). Indeed, the probability approaches

1 that ordinary maximum-likelihood estimates do not even exist, a result expected given

similar results for the binary Rasch model (Haberman, 1977).

A much more subtle problem arises if the number q of items increases as the number

n of examinees increases. Given previous results for the binary Rasch model (Haberman,

1977, 2004), it is reasonable to expect that consistency results would be available in

this case. As shown in this section, this expectation is indeed fulfilled. One finds that

max1≤j≤q max0≤k≤rj−1 |β̂jk − βjk| converges in probability to 0, and, for any given examinee

i, θ̂i − θi converges in probability to 0. It also follows that the empirical distribution

function D̂ of the θ̂i converges weakly with a probability of 1 to the distribution function D

of θ1.

A fixed number of items. For a fixed number of items, the existence issue is quite

straightforward for ordinary joint maximum likelihood, although consistency requires a

more careful argument. Consider the following theorems.

Theorem 2 Let the number q of items be fixed, and let the number n of examinees approach

∞. Then the probability that joint maximum-likelihood estimates exist approaches 0.

Proof. Let Ps, s in S, be the unconditional probability P (Si = s) that Si = s. Then

each Ps is positive, so that the probability is positive that examinee i has either a minimal
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formula score Si = s(1) or a maximal formula score s(A). Joint maximum-likelihood

estimates only can exist if s(1) < Si < s(A) for each examinee i from 1 to n. The

probability that s(1) < Si < s(A) for 1 ≤ i ≤ n is [1− (Ps(1) + Ps(A)]
n. As n approaches 0,

this probability approaches 0.

Theorem 3 Under the conditions of Theorem 2, for any integer i ≥ 1, θ̂i − θi does not

converge in probability to 0.

Proof. If Si = s(1), then θ̂i = −∞. If Si = s(A), then θ̂i = ∞. Because the probabilities

Ps(1) and Ps(A) defined in the proof of Theorem 2 are positive and constant and because

θ̂i = −∞ with probability at least Ps(1) and θ̂i = ∞ with probability at least Ps(A), it follows

that θ̂i − θi does not converge in probability to 0.

The inconsistency of β̂ is less obvious in the case of extended joint maximum-likelihood

estimates. Some insight is readily provided through an examination of the statistical

properties of the counts fsjk. This examination can be used to show that β̂ converges with

a probability of 1 to a limit βM that is not necessarily β. Demonstration of this claim

requires a study of the expectation E(fsjk) of fsjk. If msjkC is the conditional expectation

of Zijk given Si = s, then E(fsjk) is nPsmsjkC . As in the Rasch model, mkjC depends on

the array β of item parameters but not of the examinee ability θi. Let

Msjk(β) =
∑

c∈Γ(s)

δk(cj) exp[−β′Z(c)]

be the partial derivative of Ms(β) with respect to βjk, where Ms(β) is defined as in (4).

The conditional probability that Y1 = c in Γ(s) given S1 = s is

pJC(c) = [Ms(β)]−1 exp[−β′Z(c)],

so that msjkC is

msjk(β) =
Msjk(β)

Ms(β)
.

Normally msjk is positive; however, msjk(β) is 0 if s = s(1) and uj(k) > uj− or s = s(A)

and uj(k) < uj+. With these preliminary results, the following theorem is available.

14



Theorem 4 Under the conditions of Theorem 2, θ̂sC converges almost surely to θsM , s in

S, and β̂ converges almost surely to βM , where θs(1)M = −∞, θs(A)M = ∞, real θsM , s in S,

s(1) < s < s(A), βM in Λ, and real psjkM , s in S, 1 ≤ j ≤ q, and 1 ≤ k ≤ rj, are uniquely

determined by the following conditions:

psjkM = pjk(βM , θsM) (15)

for s in S such that s(1) < s < s(A), psjkM = 0 for uj(k) > uj− and s = s(1),

psjkM = ej1(βM) exp(−βjkM) (16)

for s = s(1), uj(k) = uj−, βjkM coordinate ζ(j, k) of βM , and [ej1(βM)]−1 the sum of

exp(−βjkM) for k from 0 to rj − 1 for which uj(k) = uj−, psjkM = 0 for uj(k) < uj+ and

s = s(A),

psjkM = ej2(βM) exp(−βjkM) (17)

for s = s(A), uj(k) = uj+, and [ej2(βM)]−1 the sum of exp(−βjkM) for k from 0 to rj − 1

for which uj(k) = uj+, ∑
s∈S

PspsjkM =
∑
s∈S

PsmsjkC (18)

for 1 ≤ j ≤ q and 0 ≤ k ≤ rj − 1, and

q∑
j=1

rj−1∑
k=0

uj(k)psjkM =

q∑
j=1

rj−1∑
k=0

uj(k)msjkC = s (19)

for s in S

Proof. The strong law of large numbers implies that n−1fsjk converges almost surely to

PsmsjkC . Existence and uniqueness of θsM , βM , and psjkM follow from standard results for

log-linear models (Haberman, 1974, chaps. 2, 9). Results on almost sure convergence follow

from general results on concave likelihood functions (Haberman, 1989).

To interpret the limit parameters θsM , βM , and psjkM , logarithmic penalty functions

may be employed (Gilula & Haberman, 1994, 1995). Let

Hj(x,y) = −
rj−1∑
k=0

xk log(yk)
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for rj-dimensional vectors x and y with respective nonnegative coordinates xk and yk,

0 ≤ k ≤ rj − 1, such that
rj−1∑
k=0

xk =

rj−1∑
k=0

yk = 1.

In the definition of Hj(x,y), 0 log 0 = 0. Consider probability prediction of the responses

Y1 from the sums S1 under the incorrect model that, conditional on S1 = s, s in S, the Yij,

1 ≤ j ≤ q, are independently distributed with probability

πsjk = pjk(β0, θs0)

that Yij = k for unknown real parameters θs0, s in S, and β0 in Λ. Let msjC be the

rj-dimensional vector with coordinates msjkC , and let πsj be the rj-dimensional vector with

coordinates πsjk. The expected logarithmic penalty per item is

q−1
∑
s∈S

q∑
j=1

PsHj(msjC ,πsj).

Let psjM be the rj-dimensional vector with coordinates psjkM for 1 ≤ k ≤ rj. Then the

minimum expected penalty per item is

HJ = q−1
∑
s∈S

q∑
j=1

PsH(msjC ,psjM).

The expected penalty per observation approaches HJ if θs0 approaches θsM , s ∈ S, and β0

approaches βM . Theorem 4 implies that the estimated expected log penalty function per

item

ĤJ = − 1

nq
`JCM

converges almost surely to HJ .

Theorem 4 implies that inconsistency of β̂ is observed when β and βM differ. This

situation is typically but not necessarily the case, as is evident from previous work on the

binary Rasch model (Andersen, 1973a).

The expected logarithmic penalty per item HJ is at least as large as the conditional

entropy measure per item

HM = −q−1
∑
s∈S

Ps

q∑
j=1

Hj(msjC ,msjC)
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that corresponds to the conditional entropy per item of Y1A given S1 for a random variable

A uniformly distributed on the integers 1 to q and independent of the Yij, 1 ≤ j ≤ q. One

has HJ = HM if, and only if, psjkM = msjkC . Let m̂sjC be the rj-dimensional vector with

coordinates m̂sjkC , 1 ≤ k ≤ rj, where m̂sjkC = fsjk/NS(s) for NS(s) > 0 and m̂sjkC = f+jk/n

otherwise. The entropy per item HM has an estimate

ĤM = − 1

nq

∑
s∈S

NS(s)Hj(m̂sjC , m̂sjC)

that converges almost surely to HM .

For an Rq-dimensional vector x, let the maximum norm |x| be the maximum absolute

value of the coordinates of x. As in the binary Rasch model (Haberman, 2004), the

magnitude of the maximum norm |βM − β| is of order q−1. For a formal statement and

proof of this claim, consider the following theorem in which the number of items is allowed

to increase.

Theorem 5 A real number τ > 0 exists such that |βM − β| < τ/q for all q ≥ 1 and all

items j, 1 ≤ j ≤ q, and values k, 1 ≤ k ≤ rj.

Proof. To verify this claim, consider the difference between msjkC and

psjkC = pjk(β, θsC),

where psjkC is uniquely defined by the condition that

q∑
j=1

uj(k)psjC = s

(Haberman, 1974, chap. 10). Let ωsj be independent observations with probability psjkC

that Lsj = k. The conditional probability msjkC that Yij = k given that Si = s is then the

conditional probability that ωsj = k given that

Ls =

q∑
j=1

uj(ωsj) = s.

This latter probability is then

P (ωsj = k)P (Ls − uj(ωsj) = s− uj(k)) /P (Ls = s).
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Let

µsjC =

rj−1∑
k=0

uj(k)psjkC

be the mean,

σ2
sjC =

rj−1∑
k=0

[uj(k)− µsjC ]2psjkC

be the variance, and

µ3sjC =

rj−1∑
k=0

[uj(k)− µsjC ]3psjkC

be the third central moment of uj(Ksj). If s, q, and n are selected so that

σ2
s+C =

q∑
j=1

σ2
sjC

approaches ∞, then

(Ls − s)/σs+C

and

[Ls − uj(ωsj)− s+ µsjC ]/(σ2
s+C − σ2

sjC)1/2

converge in distribution to a standard normal random variable (Cramér, 1946, pp. 215–216).

A refinement of this result permits approximation of msjC (Haberman, 2004). To derive

the desired approximations requires some simple modifications of results on Edgeworth

expansions for lattice distributions (Esseen, 1945). Terms are used based on the normal

density function and on its first three derivatives. Let

ψs = − 1

σ2
s+C

q∑
j=1

µ3sjC ,

so that −ψk/σk+C is the skewness coefficient of Ls. Let

∆sjk =
σ2

sjC − [uj(k)− µsjC ]2 − [uj(k)− µsjC ]ψs

2σ2
s+C

.

It then follows that

σ4
s+C [msjkC − psjkC(1 + ∆sjk)], 1 ≤ j ≤ q
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is uniformly bounded. This result indicates that msjkC − psjkC is of order q−1. Consider the

conditional entropy HB of Y ′
B given S1 and B for B uniformly distributed on the integers 1

to q and Y ′
j random variables for 1 ≤ j ≤ q such that P (Y ′

j = k|S1 = k) = psjkC . Then

HB = −q−1
∑
s∈S

Ps

q∑
j=1

H(psjC ,psjC)

and HM differ by a term of order q−1.

To show that |βM − β| is of order q−1 requires use of fixed point theorems (Loomis

& Sternberg, 1968, pp. 228–234). Consider solution of (18) for s in S subject to the

constraints that β is in Λ and (15) and (19) hold. For an Rq-dimensional vector x there is

a unique real value gs(x), s in S, s(1) < s < s(A), for which

q∑
j=1

rj−1∑
k=0

uj(k)pjk(x, gs(x)) = s.

Let

wj(x, θ) =

rj−1∑
k=0

[uj(k)]
2pjk(x, θ)−

[
rj−1∑
k=0

uj(k)pjk(x, θ)

]2

,

let

psjk(x) = pjk(x, gs(x)),

let

µsj(x) =

rj−1∑
k=0

uj(k)psjk(x),

let

wsj(x) = wj(x, gs(x)),

and let

ws+(x) =

q∑
j=1

wsj(x).

The function gs is infinitely differentiable, and the partial derivative of gs(x) with respect

to xjk, the coordinate ζ(j, k) of x, is

gsjk(x) =
1

ws+(x)
[uj(k)− µsj(x)]psjk(x).
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For s = s(1) and uj(k) = uj−, let

psjk(x) = ej1(x) exp(−xjk),

and for s = s− and uj(k) > uj−, let

psjk(x) = 0.

For s = s(A) and ukj(k) = uj+, let

psjk(x) = e2(xj) exp(−xjk),

while for s = s(A) and uj(k) < uj+, let

psjk(x) = 0.

Let F(x,y) be defined for x and y, x an Rq-dimensional vector with coordinate ζ(j, k)

equal to xjk, 1 ≤ j ≤ q, 0 ≤ k ≤ rj − 1, and y an RqA-dimensional vector with coordinate

Rq(a− 1) + ζ(j, k) equal to ys(a)jk, 1 ≤ a ≤ A, 1 ≤ j ≤ q, 0 ≤ k ≤ rj − 1, so that F(x,y) is

the Rq-dimensional vector with coordinate ζ(j, k) equal to

Fjk(x,y) =
∑
s∈S

[ysj+psjk(x)− ysjk]

for 1 ≤ j ≤ q and 0 ≤ k ≤ rj − 1. Here

ysj+ =

rj−1∑
k=0

ysjk.

Then

F(β, z) = 0

for zsjk = PspsjkC , and

F(βM ,y
′) = 0

for y′ with y′sjk = PspsjkM . The conclusions of the theorem follow from application of

fixed point theorems to F. Arguments are quite similar to those previously applied to the

binary Rasch model (Haberman, 2004). As a consequence, only the required derivatives are

described in the remainder of the proof.
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The function F(x,y) of x and y is infinitely differentiable. It is linear in the second

argument y. The partial derivative of Fjk with respect to xj′k′ is

Fjkj′k′(x,y) =
∑
s∈S

ysj+Fsjkj′k′(x),

where Fsjkj′k′(x) is defined in the following fashion. For s in S and s(1) < s < s(A),

Fsjkj′k′(x) = −ysj+psjk(x){δj(j′)[δk(k′)− psjk′(x)]

+[uj(k)− µsj(x)][uj′(k′)− µsj′(x)]psj′k′(x)/ws+(x)}.

For s = s(1) or s = s(A),

Fsjkj′k′(x) = −ysj+psjk(x)δj(j
′)[δk(k

′)− psjk′(x)].

Given the definitions of θsM and θsC and the properties of gs, it also follows that

θsM − θsC and psjkM − psjkC are of order q−1 if s/q converges to a constant greater than s∗−

and less than s∗+. More precise expressions for these differences can be obtained but are not

especially attractive.

A variety of entropy measures are closely linked. The difference HJ −HM is of order

q−2, so that HJ −HB is of order q−1. Let pij be the rj-dimensional vector with coordinates

pijk for 1 ≤ k ≤ rj. With a similar argument based on the normal approximation for the

distribution of S1 given θ1, it follows that HB −Hθ is of order q−1 if

Hθ = −q−1

q∑
j=1

E(Hj(p1j,p1j))

is the conditional entropy per item of Y1 given θ1.

The assumption that the numerator ujn(k) and denominator ujd(k) are uniformly

bounded implies that an integer u > 0 exists such that A ≤ uq elements for each value of q.

The conditional entropy per item

H+θ = −q−1
∑
s∈S

E ((P (S1 = s|θ1) logP (S1 = s|θ1))

of S1 given θi and the unconditional entropy per item

H+ = −q−1
∑
s∈S

Ps logPs
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of S1 cannot exceed q−1 log(uq). It follows that the conditional entropy per item

HC = −q−1
∑
s∈S

Ps

∑
c∈Γ(s)

pJC(c) log pJC(c)

= Hθ −H+θ

of Y1 given S1 and θ1 differs from Hθ by a term of order q−1 log q. The conditional

distribution of Y1 given S1 and θ1 is assumed independent of θ1, so that HC is also the

conditional entropy per item of Y1 given S1. It follows that HC differs from HB, HJ , and

HM by terms of order q−1 log q. The unconditional entropy per item

HU = −q−1
∑
s∈S

∑
c∈Γ(s)

pJ(c) log pJ(c)

= HC +H+

of Y1 differs from Hθ, HC , HJ , H, and HM by terms of order q−1 log q.

Consistency if the number of items increases. Given that the bias magnitude |βM −β| is

reduced as q increases, there is the suggestion that the inconsistency of the joint maximum

likelihood estimators for the Rasch model can be removed if the asymptotic framework

is changed so that both the sample size n and the number of items q both approach

infinity (Haberman, 1977, 2004). The previous argument with fixed-point theorems is easily

modified. The normal approximations for the sums∑
s∈S

[fsjk −NS(s)msjkC ]

and large-deviation arguments may be used to demonstrate that the probability approaches

1 that |β̂ − βM | and |β̂ − β| both converge in probability to 0.

Arguments from the binary Rasch model may be applied virtually without change to

study the distribution of θ1 (Haberman, 2004). Both θ̂sM − θsC and p̂sjkM − psjkC converge

in probability to 0 if s/q converges to a constant greater than s∗− and less than s∗+. In turn,

it follows that, for any specific individual i, θ̂i converges in probability to θi. Thus for any

real δ > 0, the fraction of examinees i ≤ n with |θ̂i − θi| > δ converges in probability to 0.

To estimate the distribution function D of the random variable θi, let D̂ be the empirical

distribution function of the θ̂i, so that D̂(x) is the fraction of the θ̂i that do not exceed the
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real number x. If D is continuous at x, then |D̂(x)−D(x)| converges in probability to 0. If

h is a continuous or piecewise-continuous bounded function on the extended real line and h

is continuous at θ1 with a probability of 1, then

Ê(h(θ)) = n−1

n∑
i=1

h(θ̂i)

converges in probability to E(h(θ1)). If the distribution function D is continuous, as is the

case for θ1 a continuous random variable, then

|D̂ −D| = sup
x
|D̂(x)−D(x)|

converges in probability to 0.

The difference ĤJ−HU then converges in probability to 0, so that the various conditional

entropies under study can be estimated. The difference ĤM −HM can only be expected to

converge in probability to 0 if q2/n approaches 0.

To ensure that all θ̂i are finite requires the condition that nPs(1) and nPs(A) both

approach 0. This condition will certainly hold if q−1 log n approaches 0 (Haberman, 1977).

In this case, the probability approaches 1 that

max
1≤i≤n

|θ̂i − θi|

and

max
1≤i≤n

max
1≤j≤q

max
0≤k≤rj−1

|p̂ijk − pijk|

converge in probability to 0.

For the TOEFL example, the consistency results are fairly satisfactory. The sample

size of n = 2, 720 is large enough so that the basic consistency results for β̂ are not a

problem if the model is correct. Because q = 71 and q−1 log n is 0.111, there is reason for

concern about the results that involve consistency of the ability estimates, for 0.111 is

not that small a number. This concern is justified to the extent that an observation does

exist in the sample for which the ability estimate is ∞. A further constraint exists in that

q−1 log q = 0.060 is not especially small, so that the unconditional entropy HU is not well

estimated. Results are presumably worse if the 71 items are divided into the 38 items from

the reading test and the 33 items from the listening test.
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2.5 Normal Approximations

The bias issues already noted in the discussion of consistency have an unusual effect on

normal approximations. It is relatively easy to find a normal approximation for the joint

maximum-likelihood estimate β̂jk of the item parameter βjk, but this approximation is often

not satisfactory because the asymptotic mean is βjkM , coordinate ζ(j, k) of βM , rather

than βjk. A normal approximation for θ̂i is available with relatively little difficulty for q

large, but there are problems in practice with the accuracy achieved. Results are rather

straightforward generalizations of those for the binary case (Haberman, 2004).

If q is constant and n becomes large, then a normal approximation is available for β̂jk

but not for θ̂i. The normal approximation is derived by conventional arguments based on

the function F developed in Section 2.4. Once again, fixed point theorems are employed as

in the binary Rasch model (Haberman, 2004). Let Z+
ijk be the adjusted random variable

with value Zijk − psjkM for Si = s. Let V+ be the covariance matrix of the Rq-dimensional

vector Z+
i with coordinate ζ(j, k) equal to Z+

ijk for 1 ≤ j ≤ q and 0 ≤ k ≤ rj − 1. Let V +
jkj′k′

be the covariance of Z+
ijk and Z+

ij′k′ . Let

µsjM =

rj−1∑
k=0

uj(k)psjkM

and

σ2
sjM =

rj−1∑
k=0

[uj(k)− µsjM ]2psjkM

be the variance of a random variable that is uj(k) with probability psjkM , let

σ2
+jM =

∑
s∈S

Psσ
2
sjM ,

σ2
s+M =

q∑
j=1

σ2
sjM ,

let S ′ be the set of s in S that are neither s(1) nor s(A), let

T1jkj′k′ =
∑
s∈S

Psδj(j
′)psjkM [δk(k

′)− psj′k′M ],

let

T2jkj′k′ =
∑
s∈S′

Ps
psjkMpsj′k′M [uj(k)− µsjM ][uj′(k′)− µsj′k′M ]

σ2
s+M

,
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and let

Wjkj′k′ = T1jkj′k′ − T2jkj′k′ .

Let W be the Rq by Rq matrix with row ζ(j, k) and column ζ(j′, k′) equal to Wjkj′k′ . Note

that
rj−1∑
k′=0

Wjkj′k′ =

rj−1∑
k′=0

V +
jkj′k′ = 0

and
q∑

j′=1

rj−1∑
k′=0

uj′(k′)Wjkj′k′ =

q∑
j′=1

rj−1∑
k′=0

uj′(k′)V +
jkj′k′ = 0

and W and V+ are symmetric and positive semi-definite. Let W+ be the Rq by Rq matrix

with row ζ(j, k) and column ζ(j′, k′) equal to

W+
jkj′k′ = Wjkj′k′ + δj(j

′) + δ1(j)δ1(j
′)[u1(k)− ū1][u1(k

′)− ū1].

Then n1/2(β̂ − βM) converges in distribution to a multivariate normal random vector with

mean 0 and covariance matrix (W+)−1V+(W+)−1. The notable problem is that the normal

approximation involves βM rather than β.

If the number q of items increases, then normal approximations remain available, but a

few changes in results are needed due to the changing dimension of β̂. Let

vsjkj′k′(β) =
Msjkj′k′(β)

Ms(β)
−msjk(β)msj′k′(β),

where

Msjkj′k′(β) =
∑

c∈Γ(s)

cjcj′ exp[−β′Z(c)].

Thus vsjkj′k′(β) is the conditional covariance of Z1jk and Z1j′k′ given S1 = s. Arguments

similar to those applied for msjkC may be used to show that

σ4
s+C [vsjkjk(β)− σ2

kjC − (2psjkC − 1)psjkC∆sjk], 1 ≤ j ≤ q, 0 ≤ k ≤ rj − 1,

σ4
s+C [vsjkjk′(β) + psjkCpsjk′C(1 + ∆sjk + ∆sjk′)], 1 ≤ j ≤ q, 0 ≤ k < k′ ≤ rj − 1,

and

σ4
s+C{vsjkj′k′(β) + psjkCpsj′k′C [uj(k)− µsjkC ][uj′(k′)− µsj′k′C ]/σ2

s+C},

1 ≤ j < j′ ≤ q, 0 ≤ k ≤ rj − 1, 0 ≤ k′ ≤ rj′ − 1,
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are uniformly bounded as σ2
s+C approaches ∞.

Let Q be an integer constant greater than 1. For q ≥ Q, let β̂Q be the RQ-dimensional

vector with coordinate ζ(j, k) of β̂jk for 1 ≤ j ≤ Q and 0 ≤ k ≤ rj − 1, let βQM be the

RQ-dimensional vector with coordinate ζ(j, k) of βjkM for 1 ≤ j ≤ Q and 0 ≤ k ≤ rj − 1,

and let βQ be the RQ-dimensional vector with coordinate ζ(j, k) equal to βjk for 1 ≤ j ≤ Q

and 0 ≤ k ≤ rj − 1. Let TQ be the RQ by RQ matrix with row ζ(j, k) and column ζ(j′, k′)

equal to

Tjkj′k′ = E(δj(j
′)pijk[δk(k

′)− pij′k′ ]).

Let T+
Q be the RQ by RQ matrix with row ζ(j, k) and column ζ(j′, k′) equal to

T+
jkj′k′ = δj(j

′) + Tjkj′k′ .

Let KQ be the RQ by RQ matrix with row ζ(j, k) and column ζ(j′, k′) equal to

Kjkj′k′ = δj(j
′)δk(k

′)− U−1
1 δ1(j

′)ujkuj′k′ .

Arguments can be used similar to those for the binary Rasch model (Haberman, 2004). Use

of the maximum norm shows that n1/2(β̂Q−βQM) converges in distribution to a multivariate

normal random vector with zero mean and covariance matrix KQ(T+
Q)−1TQ(T+

Q)−1K′
Q,

where the prime symbol is used to denote a transpose.

In practice, the asymptotic normality result is somewhat unsatisfactory. Clearly β̂jk

is intended to estimate βjk rather than βjkM . If n/q2 approaches 0, then n1/2(β̂Q − βQ)

converges in distribution to a multivariate normal random vector with mean 0 and

covariance matrix KQ(T+
Q)−1TQ(T+

Q)−1K′
Q. Nonetheless, it is far from clear that the

asymptotic approximation is adequate for the example under study, for n/q2 is 0.540 is not

a small number. The problem is likely to be much more severe with tests of similar length

in which an administration may involve around 500,000 examinees. As a practical matter,

the results indicate that ordinary asymptotic confidence intervals for βjk cannot be derived

by use of the normal approximation for β̂jk.

In the case of an individual i for an increasing number q of items, the normal

approximation for θ̂i is relatively straightforward. Arguments for the binary Rasch model

apply with only minor modifications (Haberman, 2004). One finds that (θ̂i − θi)/σ(θ̂i)
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converges in distribution to a standard normal random variable if σ(θ̂i) is the inverse of

q∑
j=1

σ2
ij,

σ2
ij =

rj∑
k=1

pijk[uj(k)− µij]
2,

and

µij =

rj∑
k=1

uj(k)pijk.

In addition, for Q a finite integer, the Q-dimensional vector with coordinates (θ̂i − θi)/σ(θ̂i)

for 1 ≤ i ≤ Q converges in distribution to a multivariate normal random vector with mean

0 and covariance matrix I.

Approximate confidence intervals are available. The probability that

θ̂i − zσ̂(θ̂i) < θi < θ̂i + zσ̂(θ̂i)

approaches 1− α if

σ̂(θi) = 1/σ̂i+,

σ̂2
i+ =

q∑
j=1

σ̂2
ij,

σ̂2
ij =

rj∑
k=1

p̂ijk[uj(k)− µ̂ij]
2,

and

µ̂ij =

rj∑
k=1

uj(k)p̂ijk.

For the TOEFL example, the estimated θ̂i range from −2.632 to 4.326 for the cases

with finite estimates. One value of θ̂i is ∞. The observed estimates σ̂(θ̂i) range from 0.248

for scores Si from 38 to 41 to 1.009 for Si = 78. The value of σ̂(θ̂i) is taken to be ∞

for Si = 79. The lower quartile for the θ̂i is -0.448, and the upper quartile is 1.164. The

estimates of asymptotic standard deviations suggest some limitations in the quality of the

normal approximations.

Normal approximations for ĤJ and ĤM are somewhat unsatisfactory in practice due to

the relatively large estimation biases involved.
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3. Conditional Maximum Likelihood

Conditional maximum-likelihood estimation is applicable to the nominal model

(Andersen, 1983), and conditional maximum-likelihood is closely related to marginal

maximum likelihood. As shown in this section, conditional maximum likelihood is quite

effective in large samples whether or not the number of items is large, and computation

of conditional maximum-likelihood estimates is relatively straightforward. In conditional

maximum likelihood, inference is conditional on the observed examinee sums Si. For c

in Γ(s) and for s in S, the conditional probability pJC(c) that Yi = c given that Si = s

satisfies

pJC(c) = pJ(c)/Ps.

Under the nominal model,

Ps = Ms(β) exp(τs),

so that

pJC(c) = exp(−β′c)/Ms(β) (20)

does not depend on the distribution function D of the ability θ1. The conditional log

likelihood function is then

`C(pJC) =
n∑

i=1

log pJC(Yi)

for the array pJC of pJC(c) for c in Γ. Thus

`C(pJC) = −β′Z+ −
∑
s∈S

ns logMs(β).

Because `C is determined by the fsjk, inferences again may be based on the collapsed table.

As in the binary Rasch model (Haberman, 2004), the relationship of conditional and

marginal maximum likelihood is relatively simple. Let P be the array with coordinates Ps

for s in S, and let

`S(P) =
∑
s∈S

NS(s) logPs

be the marginal log likelihood for the examinee totals Si, 1 ≤ i ≤ n, under the unrestricted

model that Si = s with probability Ps for some nonnegative Ps such that
∑

s∈S Ps = 1.

Then

`(pJ) = `C(pJC) + `S(P).
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Let `M denote the maximum of the log likelihood `(pJ) under the condition that pJ is in

the set Ξ corresponding to the nominal model, and let `M+ denote the maximum of `(pJ)

under the assumption that pJ is in the set Ξ+ that corresponds to the log-linear extension

of the nominal model. Obviously `M ≤ `M+. Let `CM be the maximum of `C(pJC) under

the constraint that (20) holds for some β in Λ. Let `SM be the maximum∑
s∈S

NS(s) log[NS(s)/n]

of `S(P) (0 log 0 is taken to be 0). Then

`M ≤ `M+ = `CM + `SM .

Thus conditional maximum likelihood corresponds to ordinary maximum likelihood for the

log-linear extension of the nominal model.

The conditional maximum-likelihood estimate β̂∗ of β, if it exists, is the element of Λ

such that

p̂JC(c) = exp(−β̂
′
∗c)/Ms(β̂∗),

and

`C(p̂JC) = `CM .

If β̂∗ exists, then it satisfies the conditional maximum-likelihood equations

m̂sjkC = msjk(β̂∗)

and ∑
s∈S

NS(s)m̂sjkC = Z+jk

for 1 ≤ j ≤ q and 0 ≤ k ≤ rj − 1. Conversely, if β∗ is a vector in Λ and∑
s∈S

sNS(s)msjk(β∗) = Z+jk,

then β∗ is a conditional maximum-likelihood estimate of β. Provided that S ′ is nonempty,

no more than one conditional maximum-likelihood estimate β̂∗ exists.

Existence of conditional maximum-likelihood estimates is an issue, although normally

a much less important one than in the case of joint estimation. Consider the following

theorem (Haberman, 1974, chaps. 2, 7)
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Theorem 6 In the case of S ′ nonempty, the estimate β̂∗ exists if, and only if, gsjk ≤ 0 can

be found for s in S+, 0 ≤ k ≤ rj − 1, and 1 ≤ j ≤ q, such that gsjk > 0 for s in S+ if c

in Γ(s) exists such that cj = k, gsjk = 0 otherwise, g+jk = f+jk for 0 ≤ k ≤ rj − 1, and

1 ≤ j ≤ q, and
∑q

j=1

∑rj−1
k=0 gsjk = qNS(s) for s in S+.

It follows that conditional maximum-likelihood estimates exist whenever joint

maximum-likelihood estimates exist.

Extended conditional maximum-likelihood estimates may be considered if β̂∗ does not

exist. There are m̂sjkC in [0, 1] such that∑
s∈S

NS(s)m̂sjkC = Z+jk,

q∑
j=1

rj−1∑
k=0

uj(k)m̂sjkC = s,

and msjk(β) approaches m̂sjkC for NS(s) > 0 if (20) holds and `C(pJC) approaches

`CM . If the conditional maximum-likelihood estimate β̂∗ exists, then m̂sjkC = msjk(β̂∗).

Various conventions can be considered to define β̂∗ in the case in which no conditional

maximum-likelihood estimate exists for β.

Given the estimate β̂∗, it is possible to estimate the examinee abilities θi. For each i,

the log likelihood for θi given the β̂jk∗ is

q∑
j=1

rj−1∑
k=0

Zijk log pjk(β̂∗, θi).

Given the definition of gs in the proof of Theorem 5, it follows that the estimate θ̂i∗ of θi is

θ̂sC∗ = gs(β̂∗)

for s(1) < s = Si < s(A). For Si = s = s(1), θ̂i∗ = θ̂sC∗ = −∞. For Si = s(A),

θ̂i∗ = θ̂sC∗ = ∞.

3.1 Large-Sample Properties

For q fixed, if the nominal model is valid and n becomes large, then there is no

difficulty in demonstrating that β̂C is a consistent and asymptotically normal estimate for
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β (Haberman, 1977). In the case of q increasing, a bit more argument is required. Consider

integers j, j′, k, and k′ such that 0 ≤ k ≤ rj − 1, 0 ≤ k′ ≤ rj′ − 1, 1 ≤ j ≤ q, and 1 ≤ j′ ≤ q.

Let

Vjkj′k′C = Vjkj′k′(β) =
∑
s∈S

NS(s)vsjkj′k′(β)

be the conditional covariance of Z+jk and Z+j′k′ given the NS(s), s in S. Let VC = V(β)

be the Rq by Rq matrix with row ζ(j, k) and column ζ(j′, k′) equal to Vjkj′k′(β). This

matrix is of rank Rq − q − 1 if S ′ is nonempty. Let V∗
C be the expected value of n−1VC ,

so that V∗
C is obtained from VC by substitution of Ps for NS(s). Note that if Z∗jk is the

random variable equal to Zijk −msjkC for Si = s and if Z∗i is the RQ-dimensional vector

with coordinate ζ(j, k) equal to Z∗ijk for 1 ≤ j ≤ q and 0 ≤ k ≤ rj − 1, then V∗
C is the

covariance matrix of Z∗i for each observation i. Let V+
C be the Rq by Rq matrix with row

ζ(j, k) and column ζ(j′, k′) equal to

V +
jkj′k′C = V ∗

jkj′k′C + δj(j
′) + δ1(j)δ1(j

′)[u1(k)− ū1][u1(k
′)− ū1].

Arguments rather similar to those applied in the case of joint maximum-likelihood

estimation may also be applied to conditional maximum-likelihood estimation. If the

number q of items is fixed, then β̂∗ converges almost surely to β and n1/2(β̂∗−β) converges

in distribution to a multivariate normal random variable with mean 0 and covariance

matrix (V+
C)−1V∗

C(V+
C)−1. If q approaches ∞, then |β̂∗ − β| converges in probability to 0.

For an integer Q ≥ 1, let β̂jk∗ be coordinate ζ(j, k) of β̂∗ and let β̂Q∗ be the RQ-dimensional

vector with coordinate ζ(j, k) equal to β̂jk∗ for 1 ≤ j ≤ Q and 0 ≤ k ≤ rj − 1. Then

n1/2(β̂Q∗−βQ) converges in distribution to a multivariate normal random vector with mean

0 and the covariance matrix KQ(T+
Q)−1TQ(T+

Q)−1K′
Q encountered in the discussion of the

normal approximation for n1/2(β̂Q − βQM). As in the binary Rasch model, conditional

estimation has the major advantage that the asymptotic approximations involve the actual

parameters of interest, namely the βjk, rather than the βjkM parameters. It should be noted

that KQ(T+
Q)−1TQ(T+

Q)−1K′
Q is the limit of the matrix formed from the first RQ rows and

columns of (V+
C)−1V∗

C(V+
C)−1. Let V̂C be V(β̂∗), and let V̂+

C be the Rq by Rq matrix with

row ζ(j, k) and column ζ(j′, k′) equal to

V̂ +
jkj′k′C = Vjkj′k′C(β̂∗) + nδj(j

′) + nδ1(j)δ1(j
′)[u1(k)− ū1][u1(k

′)− ū1]
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for integers j, j′, k, and k′ such that 0 ≤ k ≤ rj − 1, 0 ≤ k′ ≤ rj′ − 1, 1 ≤ j ≤ q,

and 1 ≤ j′ ≤ q. Then both for q fixed and q increasing, asymptotic confidence intervals

for parameters such as βjk are easily constructed by estimation of the asymptotic

standard deviation s(β̂jk∗) of β̂jk∗ by the square root of row ζ(j, k) and column ζ(j, k) of

(V̂+
C)−1V̂C(V̂+

C)−1. Thus results are quite similar to those for the binary Rasch model

(Haberman, 2004).

If q approaches ∞, then the asymptotic properties of θ̂i∗ are essentially the same as those

for θ̂i as far as consistency, asymptotic normality, and approximate confidence intervals are

concerned. Estimation of the distribution of θ1 can be implemented in essentially the same

fashion as in JMLE by substitution of θ̂i∗ for θ̂i.

Estimation of the entropy measures HC and HU involves relatively little difficulty, for

HC may be estimated by

ĤCN = − 1

nq
`CM ,

H+ may be estimated by

Ĥ+ = − 1

nq

∑
s∈S

NS(s) log[NS(s)/n],

and HU may be estimated by

ĤUN = ĤCN + Ĥ+.

For q constant, ĤCN converges almost surely to HC , Ĥ+ converges almost surely to H+,

and ĤUN converges almost surely to HU . For q increasing, ĤCN − HC , Ĥ+ − H+, and

ĤUN −HU all converge in probability to 0. Normal approximations are readily available,

at least if q/n approaches 0. Let σ(ĤU) be the standard deviation of q−1 log pJ(Y1), and

let σ(ĤC) be the standard deviation of q−1 log pJC(Y1). Let σ(ĤC) and σ(ĤU) be positive,

and assume that neither approaches 0 if q approaches ∞. Then n1/2(ĤUN −HU)/σ(ĤU)

and n1/2(ĤCN −HC)/σ(ĤC) both converges in distribution to a standard normal random

variable. These results are readily applied to construction of approximate confidence

intervals for HC and HU (Gilula & Haberman, 1995).
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3.2 The Newton-Raphson Algorithm

The Newton-Raphson algorithm for conditional estimation for the nominal model is

rather similar to the Newton-Raphson algorithm for conditional estimation for the binary

Rasch model (Andersen, 1972, 1983; Haberman, 2004). One begins with a preliminary

approximation β0 to β̂∗. One possibility is β̂. One then uses the iterations

βt+1 = βt − (V+
t )−1[Z+ −m+t],

where m+t is the Rq-dimensional vector with coordinate ζ(j, k) equal to

m+jk(βt) =
∑
s∈S

nsmsjkC(βt)

for 0 ≤ k ≤ rj − 1 and 1 ≤ j ≤ q and V+
t is the Rq by Rq matrix with row ζ(j, k) and

column ζ(j′, k′) equal to

V +
jkj′k′t = Vjkj′k′(βt) + nδj(j

′) + nδ1(j)δ1(j
′)[u1(k)− ū1][u1(k

′)− ū1]

for integers j, j′, k, and k′ such that 0 ≤ k ≤ rj − 1, 0 ≤ k′ ≤ rj′ − 1, 1 ≤ j ≤ q, and

1 ≤ j′ ≤ q′. In typical cases, βt converges quite rapidly to β̂∗.

Even more than for the Newton-Raphson algorithm for the binary Rasch model,

implementation of the Newton-Raphson algorithm is challenging for a large number q of

items. For efficient computation, consider random variables ωjt and Lt defined so that the

ωjt are independent for 1 ≤ j ≤ q, Lt =
∑q

j=1 ωjt; ωjt assumes integer values from 0 to

rj − 1, and ωjt = k with probability

pjkt = pjk(βjt, 0).

As in the proof of Theorem 5,

msjkt = msjk(βt) = pjktP (Lt − uj(ωjt) = s− uj(k))/P (Lt = s).

Similarly, vsjkj′k′t = vsjkj′k′(βt) satisfies

vsjkjkt = msjkt(1−msjkt),

vsjkjk′t = −msjktmsjk′t, k 6= k′,
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and

vsjkj′k′t =
psjktpsj′k′tP (Lt − uj(ωjt)− uj′(ωj′t) = s− uj(k)− uj′(k′)

P (Lt = s)
−msjktmsj′k′t, j 6= j′.

At this point, probabilities such as P (Lt = s) may be computed by use of a recursion

formula. Let Si be the set of possible sums
∑i

j=1 uj(k) for 0 ≤ k ≤ rj − 1 for 1 ≤ j ≤ i. Let

S0 be the set with element 0. Let at(h, i) be the probability that
∑i

j=1 ωjt = h for h in Si

and 1 ≤ i ≤ q, and let a(s, 0, 0) = 1. For h in Si and 1 ≤ i ≤ q, let K(h, i) be the set of

integers k from 1 to ri such that h− ui(k) is in Si−1. Then

at(h, i) =
∑

k∈K(h,i)

pjktat(h− ui(k), i− 1),

and P (Lt = s) is at(s, q).

Given that this recursion procedure is employed with double precision arithmetic, no

major computational problems are encountered. The initial values from joint estimation

are quite effective as starting values, for β̂jk and β̂jk∗ have no difference that exceed 0.06

in magnitude for the data from Form A of the TOEFL field trial, and most differences are

much smaller in magnitude. The estimated asymptotic standard deviations range roughly

from 0.03 to 0.10, so that the differences between β̂jk and β̂jk∗ can be large enough to raise

some questions about the quality of large-sample approximations for JMLE.

4. Conclusions

The results derived in the preceding sections suggest that CMLE provides an effective

approach for analysis of the nominal model even in cases in which both the sample size and

the number of items are large. Standard large-sample approximations for the distributions

of conditional maximum-likelihood estimates have been shown to apply, so that asymptotic

confidence intervals are available.

Efforts have also been made to apply JMLE under realistic conditions. Results have

been somewhat less satisfactory for the TOEFL example.

This report does not treat all important issues for the nominal model. Goodness of fit is

an issue, and behavior of estimates when the model fails is important. The measurement of

the size model error should also be explored. Generalizations of the model that are similar
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to 2PL models are of interest, and use of restricted ability distributions can be explored as

in conventional applications of marginal maximum likelihood.
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